3.327 \(\int \frac{1}{x^2 (a+b x^3)} \, dx\)

Optimal. Leaf size=122 \[ -\frac{\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}+\frac{\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}+\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{4/3}}-\frac{1}{a x} \]

[Out]

-(1/(a*x)) + (b^(1/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(4/3)) + (b^(1/3)*Log[a^(1
/3) + b^(1/3)*x])/(3*a^(4/3)) - (b^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0619413, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {325, 292, 31, 634, 617, 204, 628} \[ -\frac{\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}+\frac{\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}+\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{4/3}}-\frac{1}{a x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*x^3)),x]

[Out]

-(1/(a*x)) + (b^(1/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(4/3)) + (b^(1/3)*Log[a^(1
/3) + b^(1/3)*x])/(3*a^(4/3)) - (b^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (a+b x^3\right )} \, dx &=-\frac{1}{a x}-\frac{b \int \frac{x}{a+b x^3} \, dx}{a}\\ &=-\frac{1}{a x}+\frac{b^{2/3} \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{4/3}}-\frac{b^{2/3} \int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{4/3}}\\ &=-\frac{1}{a x}+\frac{\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac{\sqrt [3]{b} \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{4/3}}-\frac{b^{2/3} \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 a}\\ &=-\frac{1}{a x}+\frac{\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac{\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}-\frac{\sqrt [3]{b} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{4/3}}\\ &=-\frac{1}{a x}+\frac{\sqrt [3]{b} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{4/3}}+\frac{\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac{\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}\\ \end{align*}

Mathematica [A]  time = 0.0180317, size = 114, normalized size = 0.93 \[ \frac{-\sqrt [3]{b} x \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )+2 \sqrt [3]{b} x \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )+2 \sqrt{3} \sqrt [3]{b} x \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )-6 \sqrt [3]{a}}{6 a^{4/3} x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*x^3)),x]

[Out]

(-6*a^(1/3) + 2*Sqrt[3]*b^(1/3)*x*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*b^(1/3)*x*Log[a^(1/3) + b^(1
/3)*x] - b^(1/3)*x*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3)*x)

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 99, normalized size = 0.8 \begin{align*}{\frac{1}{3\,a}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-{\frac{1}{6\,a}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-{\frac{\sqrt{3}}{3\,a}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-{\frac{1}{ax}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(b*x^3+a),x)

[Out]

1/3/a/(1/b*a)^(1/3)*ln(x+(1/b*a)^(1/3))-1/6/a/(1/b*a)^(1/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2/3))-1/3/a*3^(1/2
)/(1/b*a)^(1/3)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))-1/a/x

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.45847, size = 262, normalized size = 2.15 \begin{align*} -\frac{2 \, \sqrt{3} x \left (\frac{b}{a}\right )^{\frac{1}{3}} \arctan \left (\frac{2}{3} \, \sqrt{3} x \left (\frac{b}{a}\right )^{\frac{1}{3}} - \frac{1}{3} \, \sqrt{3}\right ) + x \left (\frac{b}{a}\right )^{\frac{1}{3}} \log \left (b x^{2} - a x \left (\frac{b}{a}\right )^{\frac{2}{3}} + a \left (\frac{b}{a}\right )^{\frac{1}{3}}\right ) - 2 \, x \left (\frac{b}{a}\right )^{\frac{1}{3}} \log \left (b x + a \left (\frac{b}{a}\right )^{\frac{2}{3}}\right ) + 6}{6 \, a x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*x*(b/a)^(1/3)*arctan(2/3*sqrt(3)*x*(b/a)^(1/3) - 1/3*sqrt(3)) + x*(b/a)^(1/3)*log(b*x^2 - a*x*
(b/a)^(2/3) + a*(b/a)^(1/3)) - 2*x*(b/a)^(1/3)*log(b*x + a*(b/a)^(2/3)) + 6)/(a*x)

________________________________________________________________________________________

Sympy [A]  time = 0.457542, size = 29, normalized size = 0.24 \begin{align*} \operatorname{RootSum}{\left (27 t^{3} a^{4} - b, \left ( t \mapsto t \log{\left (\frac{9 t^{2} a^{3}}{b} + x \right )} \right )\right )} - \frac{1}{a x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(b*x**3+a),x)

[Out]

RootSum(27*_t**3*a**4 - b, Lambda(_t, _t*log(9*_t**2*a**3/b + x))) - 1/(a*x)

________________________________________________________________________________________

Giac [A]  time = 1.13272, size = 163, normalized size = 1.34 \begin{align*} \frac{b \left (-\frac{a}{b}\right )^{\frac{2}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{3 \, a^{2}} + \frac{\sqrt{3} \left (-a b^{2}\right )^{\frac{2}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{3 \, a^{2} b} - \frac{\left (-a b^{2}\right )^{\frac{2}{3}} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{6 \, a^{2} b} - \frac{1}{a x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="giac")

[Out]

1/3*b*(-a/b)^(2/3)*log(abs(x - (-a/b)^(1/3)))/a^2 + 1/3*sqrt(3)*(-a*b^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b
)^(1/3))/(-a/b)^(1/3))/(a^2*b) - 1/6*(-a*b^2)^(2/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b) - 1/(a*x)